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ON THE STABILITY 
OF VARIABLE STEPSIZE RATIONAL APPROXIMATIONS 

OF HOLOMORPHIC SEMIGROUPS 

C. PALENCIA 

ABSTRACT. We consider variable stepsize time approximations of holomorphic 
semigroups on general Banach spaces. For strongly A(O)-acceptable rational 
functions a general stability theorem is proved, which does not impose any 
constraint on the ratios between stepsizes. 

1. INTRODUCTION 

Let X be a complex Banach space, and let A: D(A) c X -- X be the 
infinitesimal generator of a holomorphic semigroup etA, t > 0 of linear and 
bounded operators in X (see, e.g., [15]). In this paper we are concerned with 
the problem of the stability of variable stepsize rational time approximations to 
the initial value problem 

{ u'(t) = Au(t), 
(1) ~~~~~u(0) = uo. 

Let us recall that the evolution operators associated with parabolic problems 
define holomorphic semigroups. Thus, holomorphic semigroups appear in many 
important problems. As is well known, a rational method for (1) replaces the 
operator etA, t = kAt, k > 1 integer, by an operator r(AtA)k , where r(z) is a 
rational approximation to the exponential. Basic examples include the backward 
Euler method, which is based on the rational function r(z) = (1 - z)-', and 
the Crank-Nicolson method, which is based on the rational function r(z) = 

(1 + z/2)( 1 - z/2)-1 . The Lax stability of the method requires the boundedness 
for each t > 0 of the powers r(AtA)k, At - tlk, k > 1 integer (see, e.g., [16]). 
More generally, when variable stepsizes are used, Lax stability requires that for 
each t > 0 the products r(AtkA)... r(At1A), t = Atl + *-* + Atk > 0, are 
bounded as the grid is refined (see, e.g., [17]). Moreover, if the semigroup etA 
is bounded, i.e., lietAl <I? C, t > 0, then the stronger property of the collective 
boundedness of r(AtkA) ... r(AtiA), t = Atl + *** + Atk > 0, independently 
of t > 0 and the stepsizes Ati, is also of interest; i.e., one tries to ascertain 
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whether a constant C' > 0 exists such that 

(2) )Ir(hKA). r(hiA)iI < C' 

holds, for each finite sequence of positive numbers h, 7.. , h . Our goal is to 
establish the bound (2) for some of these rational methods. 

Let us mention some results which are directly related to the present paper. 
The reader is also referred to [3] and [1 3] for recent overviews on this matter. 
Recall that a rational function r(z) is called A(0)-acceptable (0 < 0 < 7z/2) 
when it possesses no poles in the sector 

S( = {0} U {z C C: z i 0, I arg(-z)I < 0} 

and satisfies Jr(z)I < I there. If, in addition, jr(ox&l < 1 , then r(z) is called 
strongly A(0)-acceptable. When 0 =7r/2, then the term A-acceptable is used. 
For example, the rational function associated with the backward Euler method 
is strongly A-acceptable, while the rational function associated with the Crank- 
Nicolson method is A-acceptable. 

We allow now the semigroup etA to be merely strongly continuous, i.e., not 
necessarily holomorphic, and also suppose that it is bounded. Given an A- 
acceptable rational function r(z), the question arises as to whether the exis- 
tence of the bound (2) is guaranteed. The answer is affirmative for dissipative 
generators in Hilbert spaces (see [12 I and [20]). In [7] it was conjectured that, 
for a general Banach space X, there exists a constant C = C(A, r) such that 

(3) llr(AtA)kll < Ck'l/2 (k integer, k > 1). 

This conjecture was proved by Brenner and Thomee in [I]. Moreover, there is 
an example (cited in [1] and fully developed in [3]) where the growth in (3) is 
attained. Thus, it turns out that (2) cannot hold in general if r is A-acceptable 
and elA bounded and strongly continuous. 

There are several improvements of (3) for sectorial operators A. Sectorial 
means (see, e.g., [6]) that for some 0 e (0, 7) the spectrum of A is contained 
in the sector S'f and for a suitable constant M > I we have the bound 

(4) li(z-A)-'II < (z M C' 

The set formed by all the linear, densely defined closed operators A: D(A) c 
X X satisfying condition (4) is denoted by ,(X, M, 0). It is known (see, 
e.g., [1 5] and [22]) that A is the generator of a bounded holomorphic semigroup 
if, and only if, A belongs to a class ,(X, M, 0), with 0 < 0 < m/2, M > I . 
Let A c- ,S'(X, M, 0), 0 - 0 < m/2. In [10] the convergence of rational 
strongly A(0)-acceptable methods for bad initial data u, e X is studied, in 
cases where X is a Hilbert space and A satisfies the more restrictive condition 
(Ax, x) C SJ, x rA X. Some of the ideas developed in [10] can also be applied 
to the study of the stability of rational methods in Banach spaces. For general 
Banach spaces, it was announced in [I] (see also [9] and [I I]) that for any 
strongly A(0)-acceptable rational function r(z) there is a constant C = C(r, 0) 
such that 

(5) llr(AlA)II < Mc' (k integer, k > 1); 
i.c., the rational method based on r(z) is stable for constant stepsizes. This 
result has been extended recently in [3] and [1 3], where (5) has been established 
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for A(6)-acceptable rational functions, i.e., allowing Ir(x) = 1 . (In [13) only 
A-acceptability is considered.) The results in [31 and [13) show the stability of 
the Crank-Nicolson scheme when applied, with constant time-steps, to parabolic 
problems in the maximum norm. In [ l 31 variable stepsizes are also allowed, but 
the ratio between them must remain bounded (quasi-uniform mesh). 

In this papeT we give another improvement of (3). As in 1U3), we consider 
sectorial operators and variable stepsizes. However, we now assume strong 
A(6)-acceptability rather than A(6)-acceptability. As a result, stability can be 
shown for arbitrary sequences of stepsizes. The main contribution of the paper 
is the following theorem. 

Theorem 1. Let 0 E (0, 7r/2), M > 1, and let r(z) be a strongly A(0)- 
acceptable rational function r(z), consistent with the exponential, i.e., with 
r(O) = r'(0) = 1. Then there exists a constant C = C(r, l, 6) > 0 such 
that the bound 

(6) llr(hkA)r(hkl A) r(hiA)!1 < C 

holds, for each complex Banach space X, each sectorial operator A E S(X, M, 0), 
and any finite sequence h1, h2, ... , hk of positive numbers. 

On the other hand, suppose that an A(6)-acceptable rational function r(z) 
is consistent with the exponential of order p > 1 , i.e., r(z) - ez = o(zP+I) 
z -, 0, and we maintain the remaining assumptions of Theorem 1. Then, as 
pointed out in [8], we have the following error bound: 

k 

(7) etAu - 7 r(h1A)u < Chq flAq ul (u E D(Aq), 1 < q < p), 

where t = hI + + hk and h = max{h1, ... , hk}. This bound is easily proved 
by means of an argument similar to the one used in Theorem 4.4 in [9]. Here, 
the case q = 0 is excluded and the stability cannot be obtained as a consequence 
of (7). However, the bound (7) gives the consistency of the method based upon 
the rational function and, along with Theorem 1 (see, e.g., [17], [18]), yields 
also convergence (without order), i.e., we have 

k 

lim lr(hjA)u = elAu (u E X, t > 0), 
j=l1 

where hi + - + hk t and max{h, ...h , hk} -` 0+. 
The proof of Theorem 1 relies on a new general bound for the operator 

norm of f(A). Here, A is again in S(X, M, 0), 0 < 0 < 7t/2, and f is any 
holomorphic, not necessarily rational, function defined in a neighborhood of the 
compact set {cXJUS() on the Riemann sphere. Recall that the bounded operator 
f (A): X -+ X is then defined by means of the so-called Dunford-Taylor integral 
(see, e.g., [5]) 

(8) f(A) -f(x) + 21. f(f(z) - f(cx))(z - A)' dz, 

where F is an appropriate path surrounding the spectrum of A on the Riemann 
sphere. When f(z) is a rational function or the exponential, the formula (8) is 
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compatible with other available definitions of f(A) . The bound we are referring 
to is 

(9) flf(A)fl < 2M{3 + ln+(Ne(f)/lffleo)}flffle, 

where No is a certain functional, Iflflo denotes the supremum of If(z)I in So, 
and ln+ stands for the positive part of the logarithm, ln+ r = max{0, ln r} . 

In ?2 we define the functional No and establish (9). Section 3 is devoted to 
the proof of Theorem 1 and to a brief discussion of examples of its applicability. 

2. BOUNDS FOR GENERAL HOLOMORPHIC FUNCTIONS 

Here and later we will maintain the following notation. Ho is the set of all 
holomorphic functions f which we defined in an open neighborhood Qf of 
{oo} U So on the Riemann sphere. For f E Ho, we will denote 

flfflo = sup{Lf(z)I: z E So, 

as well as 

Zo(f) = sup{lf(z) - f()l/zl : z E Sol, 

I0(f ) = sup{ If(z) - f(oC)GH zl : z E Sol, 

K6(f) = iCf(0)M + if(oc) + Zo(f ))Mf(0)M + If(O)l + Io(f)) 

and 

No(f) = If(0)j + If(oX)l + Z6(f)16(f)- 
Let f E Ho and A > 0, and set fJ(z) = f((z), Az Ez f . Note that 

(1 0) Z6 (fA) = AZ6 (f ) and Io(fA) = A- 1I(f), 
so that the quantity No(f) is invariant against rescaling of z. In fact, as is 
easily checked, we have 

(I1) No(f) = inf{K(fA): A > 01. 

No is also invariant against inversion z -+ z-1, which is another obvious 
symmetry of So. 

Lemma 1. Let 0 E (0, 7r/2) and M > 1. The bound 

(12) Ilf(A)II < (2M/{N /) No}(f ) if N N6(f) < IlfIIe, 
(2M/7){1 +ln(NO(f)IJIf II)jIIf if No(f) > lIf ll 

holds for each Banach space X, each operator A in S(X, M, 0), and each 
holomorphic function f E Ho with f(0) = f(oo) = 0. 
Proof. Observe that both sides in (12) are homogeneous in f E Ho, so that 
there is no loss of generality in assuming that lifelo = 1. As f(oo) = 0, the 
operator f(A) is given by the Dunford-Taylor integral (see (8)) 

(13) f(A)= 2 |jf(z)(z - A)-' dz, 

where F is a path in the complex plane that leaves the sector S6 to its left. In 
fact, since f (0) = 0, it is straightforward to verify that F can be chosen as the 
positive boundary of So. Set, for each positive r, 

( f, r, 0) = rnax(lf(re'0)1, If(re-'6)l) 
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and take norms in (13). The result is 

(14) flf(A)lI <?- cM(f, r, )r-f dr. 

Recall now the definitions Z6 (f ) and Io(f). It is clear that the inequalities 

rrZo(f) 
wo(f, r, 0) < HflHlo = 1 

Io (f )/r 

are valid for r > 0. Hence, for 0 < a < b < +oo, we can transform (14) into 

(15) tIf(A)I I <-{ Zo(f ) dr + jb r- dr + 
j 

Io (f )r- dr} 

= (M/7){laZo(f ) + ln(b/a) + Io(f )/b)}. 

If No(f) = /Z6(f-)Io(f ) < 1, we take 

a =b= I6(f)Z6(f)- 

in (15), whereas, if No(f) > 1, we choose 

a = Z6(f)-1 < Io(f) = b. 

This proves (12). 0 

Theorem 2. Let 0 E (0, nr/2) and M > 1. The bound 

(16) HIf(A)II < 2Mf{3 + ln+(No(f)/lllf II)}HIfHII 

holds for each Banach space X, each operator A in S(X, M, 0), and each 
holomorphic function f E Ho . 

Proof. We begin by proving the slightly different bound 

(17) Ilf(A) H1 < 2M{3 + ln+(KO(f )/IJfHII)}HIf Ho. 

We can assume again that IIf I -=1 . Define the new complex function g E Ho 
by means of 

g(z) = f(z) - f(O)(1 _ z)-1 + f(oo)z(1 - z)-, 

so that g(oo) = g(O) = 0. On the other hand, given that A E S(X, M, 0), we 
have 

11(1 - A)-'II < M 

and 

IIA(l-A)-'l = II(A - 1 + 1)(1 - A)-' 1 

< 11(1 - A)-'1I + 1 < 1 + M < 2M, 

so that 

If(A)I = llg(A) + f(0)(1 - A)-1 + f(oo)A(l -A)- 

< IIg(A)II + If(O)I 1(1 - A)-' 1 + If(oo) IIA(1 - A)- 

< IIg(A)II + 3M. 
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Therefore, in order to prove (17), it suffices to establish that 

(18) IIg(A)II < 2M{3/2 + ln+ K6(f )}. 

If z belongs to S(0), then (1 - z) - < 1 and Iz(1 - z)1l ? 1, because 
9(z) < 0. Consequently, 

(19) llgllo ? IlfHo1 + If(0)I + lf(oo)l 3. 

Now fix z :$ 0 in So. We have 

Ig(z)/zl I If(z) - f(0)l/lzI + If(o)z1 - f(0)z- (1 - Z)-II + If(o) /I1 - 

If(z) - f(0)l/lzl + If(0)I/ 1 - zI + If(oo)I/ 1 - 

I f(0)l + if(oo)I + ZO(f ), 
and taking the supremum in z E So in the above inequality, we conclude that 

ZO(g) ? If(?)l + if(oo)0 + ZO(f) 
In the same way we prove that 

IO(g) ' If(?) + if(oo) + Io(f), 
and combining the last two inequalities, we deduce 

(20) No (g) = CZ6 (g)Io (g) < K6 (f) 
We now apply Lemma 1 to g. Suppose first that No(g) < ligl o. In this case, 
by virtue of (19), 

IIg(A)II < (2M/17)NO(g) < 3M 
and (18) holds. Suppose now that No(g) > IIgII* . By (20) we can write 

g(A)II < (2M/7)){ 1 + ln(No(g)/1IgIIo)}jIIgII 
< (2M/I)(1 + lnKo(f)-lnII gjI)IIgII, 

and since 

(21) -ulna < e-1 ( > 0), 

and by (19), we arrive at 

g(A)I I 2M3(1 + lnK6(f)) + 2M/(e7) 
< 2M(1 + lnKO(f)) +M, 

which implies (18). 
It remains to prove (16) from (17). Let us fix A > 0 and denote f,(z) = 

f(Az), Az E Qf. The operator A-IA belongs again to S(X, M, 0), thus the 
bound (17) gives 

IIf(A)II=IIf(-1A)I ? 2M {3+ln+ KO(?A) f))} Hflo 

and (16) now follows easily after taking the infimum with respect to A > 0 and 
recalling (1 1). o 

3. RATIONAL APPROXIMATIONS WITH VARIABLE TIME-STEPS 

We begin this section with the proof of Theorem 1. First, two simplifications 
are made. 
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It is known that for each pair of constants M > 1 and 0 < 0 < 7r/2, 
there exists a new pair M' > 1 and 0 < 0' < 0 such that S(X, M, 0) c 
S(X, M', 0') (see, e.g., [6]). It is clear, by virtue of the maximum modulus 
principle, that 

Ir(z)I < I (z ESo,, z : ). 

For A c S(X, M, 0) we could argue with A as an element in S(X, M', 0'); 
thus there is no loss of generality if we assume that 

(22) Ir(z)I < 1 (z SO, z O). 

Second, fix A E S(X, M, 0). It is well known (see [15]) that A generates a 
holomorphic semigroup exp(tA), t > 0, and that for some constant L(0) > 0 
we have 

fl exp(tA) l < L(6)M (t > 0). 

Denote by 11 fl the norm in X, and then define a new norm fl * in X by 
means of 

IIxII* = sup{fl exp(tA)xHl: t> 0} (x E X). 

Observe that 
llxll < Ilxfl* < L(0)MAlxfl (x E X) 

and that, with respect to the new norm II * II*, the semigroup exp(tA), t > 0 
becomes a semigroup of contractions. Thus, after changing the norm in X, if 
necessary, there is no loss of generality if we assume in the rest of the proof 
that the exp(tA), t > 0, is a semigroup of contractions on X or, equivalently 
because of the Hille-Yosida theorem (see, e.g., [ 1 5]), that 

(23) H1(1 - hA)-<1l < 1 (h > O). 

After the above simplifications we begin the proof. For each integer k > 1 
we define 

(24) Ck = sup ||r(AkA)r(4i1A) ... r(AIA)Il, 

where AI ..., k range through all the finite sequences of length k, formed 
with positive real numbers. Since the composition appearing in (24) is com- 
mutative, and since we may replace the operator A by AIA, which is also 
in S(X, Al, 0), we see that it is sufficient to consider monotone sequences 
Ak > Ak-I > ... > ?2 > l1 with Al = 1. 

Suppose we have proved the following fact: There exists a sequence {ek }+ 
of positive numbers, depending only on the rational function r(z), such that 

+00 

(25) E gk < +X 
k=1 

and such that, for each integer k > 2 and any monotone sequence Xk > . > Al 
with AI = 1, the bound 

(26) flr(AkA)r(Ak_lA) ... r(X1,A)fl K< k + Ck-I 

holds. Then 

Ck < Ek + Ck-1 (k > 2), 
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which implies 
k 

Ck Cl +ZEm (k>2), 
m=2 

and the proof is finished, because of (25). 
Now we are going to construct a sequence {Ck}1+ satisfying (25) and (26). 

Since the rational function r(z) is strongly A(6)-acceptable and satisfies (22), 
it is easy to select a constant c > 0 such that 

(27) Ir(z) { < e-c if z > 1 z E So, 

Remember that r(z) is also consistent with the exponential, i.e., 

r(0) = r'(0) = 1, 

and hence there exists L > 2 with 

(28) Ir(Z)-( l - z) - l < { Llzl if z E S0 zI < 1, 
L if z ESo. lzl?1. 

Finally, we take a number a E (1/2, 1), and then choose a constant L* > L 
such that 

(29) Leck e-ck( < L*k20 (k > 1). 
We will set, for each integer k > 1, 
(30) k =L*k 

and 

(31) ek = sup{2M{3 + ln+(N*/x)}x: 0 < x < ? }, 
where 

(32) 1N* := 1 (1 + Z6(r))(1 + Io(r))(l - r(o)j)- > 1> 

Let us check that (25) holds. Observe that for small enough x > 0 the expres- 
sion xln+(N*/x) is increasing and hence, for a large enough integer k, we 
have 

C/ = 2M{3 + ln+(N*/ce)}ce < 2M{3 + lnN*}Ie + 2M| lnce*Ike, 
and (25) follows since both series Z??= ek = Z??l L*k 2 and Z In l je* 
= Z??= 2L* InL*ck-2a Ink are convergent because of c > 1/2. 

Now we are going to establish (26). Let )k > *-> ? I be a monotone 
sequence of length k > 2, with Al = 1 . Denote 

g(z) = r(AkZ)... r(A2Z) 

and 
f(z) = g(z)(r(z) - (1 - z)-1) 

We can write 

r(AkA) ... r(A2A)r(A) = f(A) + g(A)(1 -A)-, 

so that, because of assumption (23) and definition (24), 

IIr(AkA) ... r(A2A)r(A)II < IIf(A)II + C/-1, 
and what we need is to estimate IIf(A)HII. 
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Set 
fm(z) = r(Xmz) (2 < m < k) 

and 
fi(z) = r(z) - (1 - z)-. 

For z E So we have 
k 

z(f(z) - f(oo)) = z E fk(z) fm+ I(z)(fm (z) - r(oo))r(oo)m1 
m=1 

and therefore, taking (10) into account, 
k 

z(f(z) - f(o)) I < Z Io (fm)tm-1 
m=1 

k 

= I(fi ) + Z Ie(r)lm l, 
m=2 

where u = Ir(oo) . Hence, because Io (fi) ? 1 + Io (r) and im > 1 we find that 

(33) Io(f ) ? (1 + Io(r))(1 - p)-i 

For z E So, z $ 0, we have also 

(f(z) - f(0))z-l = lf(z)z-1l < Iz-l(r(z) - (1 - z)-l 
< I(r(z) - 1)z-'I + I((1 - z)-1 - 1)z-11 < ZO(r) + 1; 

thus 
ZO(f) f 1 + Zo6(r), 

which together with (32) and (33) yields 

(34) N(f) k + + Z6(r))(1 + IO(r))(1 - ) N*. 

According to Theorem 2, -we find 

Ilf(A)jj < 2M{3 + ln+(No(f)/ IlfII)}IlfIIe 

and, because of the definition (31), the proof of Theorem 1 will be completed 
once we establish 

(35) llfllo < 8k 

Let z e So. If lzl < k then, by (28), we have 

Jf(z)I < jfi(z)I = jr(z) - (1 - z)-1 < Lk-2a < J* 

while if lzl > k-, then, by (27), (28), and (29), we have 

f(z)j < Llr(Akkz) r(,2 z)| < L(eka )kl 

< Leck-a e-ck(') < L*k*-2 * 

so that in either case If(z)l I :k, z E So, and (35) is satisfied. 5 

We end the paper with a brief discussion about further extensions of The- 
orem 1. First we consider the case where A generates a holomorphic semi- 
group but this semigroup is not bounded, so that for some w > 0 we have 
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(A - co) E S(X, M, 0). This case occurs for example in parabolic equations 
with a source term, or in parabolic systems of PDEs. The same argument used in 
the final section in [13] shows that for any consistent, strongly A(0)-acceptable 
rational function r(z), there exist two constants C = C(M, 0, r) > 0 and 
J = J(M, 0, r) > 0 such that 

I|r(hkA). r(h,A)jj < Cejt (t = hi + + hk > 0) 

On the other hand, when discretization in space is considered as well, it is 
necessary to analyze the stability of a family of problems 

{ u,(t) =AA uA (t), 
U A(O) = ux,O 

which depends on a parameter Ax -* 0+ (see, e.g., [14] and [18]). If AAx E 
S(XA, MAx, 0), then the stability will be guaranteed as long as the constants 
MM remain bounded when Ax -* 0+, a condition that of course many numer- 
ical procedures fulfill (see [2] and [21]). 

Finally, Theorem 1 could be useful in the theory of discretizations of ODEs, 
when deriving stability bounds which are independent of the stiffness of the 
problem (see [4] and [19]). 
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